Inhibition of Myc-induced cell transformation by brain acid-soluble protein 1 (BASP1).

نویسندگان

  • Markus Hartl
  • Andrea Nist
  • M Imran Khan
  • Taras Valovka
  • Klaus Bister
چکیده

Cell transformation by the Myc oncoprotein involves transcriptional activation or suppression of specific target genes with intrinsic oncogenic or tumor-suppressive potential, respectively. We have identified the BASP1 (CAP-23, NAP-22) gene as a novel target suppressed by Myc. The acidic 25-kDa BASP1 protein was originally isolated as a cortical cytoskeleton-associated protein from rat and chicken brain, but has also been found in other tissues and subcellular locations. BASP1 mRNA and protein expression is specifically suppressed in fibroblasts transformed by the v-myc oncogene, but not in cells transformed by other oncogenic agents. The BASP1 gene encompasses 2 exons separated by a 58-kbp intron and a Myc-responsive regulatory region at the 5' boundary of untranslated exon 1. Bicistronic expression of BASP1 and v-myc from a retroviral vector blocks v-myc-induced cell transformation. Furthermore, ectopic expression of BASP1 renders fibroblasts resistant to subsequent cell transformation by v-myc, and exogenous delivery of the BASP1 gene into v-myc-transformed cells leads to significant attenuation of the transformed phenotype. The inhibition of v-myc-induced cell transformation by BASP1 also prevents the transcriptional activation or repression of known Myc target genes. Mutational analysis showed that the basic N-terminal domain containing a myristoylation site, a calmodulin binding domain, and a putative nuclear localization signal is essential for the inhibitory function of BASP1. Our results suggest that down-regulation of the BASP1 gene is a necessary event in myc-induced oncogenesis and define the BASP1 protein as a potential tumor suppressor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic interaction between WT1 and BASP1 in transcriptional regulation during differentiation

The Wilms' tumour suppressor protein WT1 plays a central role in the development of the kidney and also other organs. WT1 can act as a transcription factor with highly context-specific activator and repressor functions. We previously identified Brain Acid Soluble Protein 1 (BASP1) as a transcriptional cosuppressor that can block the transcriptional activation function of WT1. WT1 and BASP1 are ...

متن کامل

Effect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.

Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...

متن کامل

Albumin-induced apoptosis of tubular cells is modulated by BASP1

Albuminuria promotes tubular injury and cell death, and is associated with faster progression of chronic kidney disease (CKD) to end-stage renal disease. However, the molecular mechanisms regulating tubular cell death in response to albuminuria are not fully understood. Brain abundant signal protein 1 (BASP1) was recently shown to mediate glucose-induced apoptosis in tubular cells. We have stud...

متن کامل

1H, 13C and 15N resonance assignments of human BASP1

Brain acid-soluble protein 1 (BASP1, CAP-23, NAP-22) appears to be implicated in diverse cellular processes. An N-terminally myristoylated form of BASP1 has been discovered to participate in the regulation of actin cytoskeleton dynamics in neurons, whereas non-myristoylated nuclear BASP1 acts as co-suppressor of the potent transcription regulator WT1 (Wilms' Tumor suppressor protein 1). Here we...

متن کامل

WT1 and its transcriptional cofactor BASP1 redirect the differentiation pathway of an established blood cell line

The Wilms' tumour suppressor WT1 (Wilms' tumour 1) is a transcriptional regulator that plays a central role in organogenesis, and is mutated or aberrantly expressed in several childhood and adult malignancies. We previously identified BASP1 (brain acid-soluble protein 1) as a WT1 cofactor that suppresses the transcriptional activation function of WT1. In the present study we have analysed the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 14  شماره 

صفحات  -

تاریخ انتشار 2009